segunda-feira, 22 de julho de 2019


Movimento e energia[editar | editar código-fonte]

De acordo com a teoria da relatividade especial de Einstein, a medida que um elétron se aproxima da velocidade da luz, do ponto de vista de um observador sua massa relativística aumenta, e por causa disso torna-se mais difícil acelerar a partir de dentro do plano do observador de referência. A velocidade do elétron pode se aproximar, mas nunca alcançar, a velocidade da luz no vácuo, c. Entretanto, quando elétrons relativísticos- isto é, elétrons se movendo a uma velocidade próxima de c-são injetados em um meio dielétrico tal como a água, onde a velocidade local da luz é significantemente menor que c, os elétrons temporariamente se movem mais rápido do que a luz no meio. A medida que interagem com o meio, eles geral uma luz fraca denominada radiação Cherenkov.[129]
O gráfico inicia no zero e se curva rapidamente para direita e para cima
Fator de Lorentz em função da velocidade. Inicia com o valor 1 e tende ao infinito a medida que v se aproxima de c.
Os efeitos da relatividade especial são baseados em uma quantidade conhecida como fator de Lorentz definido como  onde ‘’v’’ é a velocidade da partícula. A energia cinética Ke de um elétron se movendo com velocidade v é:
x



TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde me é a massa do elétron. Por exemplo, o Centro Acelerador Linear de Stanford pode acelerar um elétron a aproximadamente 51 GeV.[130] Uma vez que um elétron se comporta como um onda, em uma dada velocidade tem a característica do comprimento de onda de Broglie. Isto é dado por λe = h/p onde h é a constante de Planck e p é o momento.[52] Para o elétron de 51 GeV acima, o comprimento de onda é aproximadamente 2.4×10−17 m, que é pequeno o suficiente para explorar estruturas inferiores ao tamanho do núcleo atômico.[131]

Formação[editar | editar código-fonte]

Um elétron atinge um núcleo a partir da esquerda, resultando em um elétron e um pósitron que saem à direita
Produção de par provocada pela colisão de um fóton com um núcleo atômico
A teoria do Big Bang é amplamente aceita para explicar os estágios iniciais da evolução do Universo.[132] Durante o primeiro milissegundo do Big Bang, a temperatura era superior a 10 bilhões Kelvin e os fótons tinham energia media superior a milhares de elétron-volts. Estes fótons tinham energia suficiente para reagir um com outro para formar pares de elétrons e pósitrons. Da mesma forma, os pares de elétron-pósitron se aniquilavam e emitiam fótons energéticos:
γ + γ ↔ e+ + e
x



TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Um equilíbrio entre elétrons, pósitrons e fótons foi mantido durante esta fase da evolução do Universo. Porém, após 15 segundos terem se passado, a temperatura do universo caiu a um limiar inferior onde a formação elétron-pósitron poderia ocorrer. A maior parte dos elétrons e pósitrons sobreviventes se aniquilou, liberando radiação gama que reaqueceu o universo.[133]
Por razões que permanecem incertas, durante o processo de leptogênese havia um excesso no número de elétrons em relação aos pósitrons.[134] Assim, aproximadamente um elétron a cada bilhão sobreviveu ao processo de aniquilação. Este excesso foi compatível com o excesso de prótons em relação aos antiprótons, em uma condição conhecida como assimetria bárion, que resultou em uma carga líquida de zero para o universo.[135][136] Os prótons e nêutrons remanescentes começaram a participar de reações em um processo conhecido como nucleossíntese, formando isótopos do hidrogênio e hélio, com traços do elemento lítio. Este processo atingiu um máximo após aproximadamente cinco minutos.[137] Os nêutrons remanescentes da nucleossíntese passaram por um decaimento beta negativo com uma meia-vida de aproximadamente mil segundos, liberando um próton e um elétron no processo,
n → p + e + ν
e
x



TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Pelos próximos 300000400000 anos, o excesso de elétrons permaneceu com muita energia para se conectar ao núcleo atômico.[138] O que se seguiu foi um período conhecido como recombinação, quando os átomos neutros foram formados e o universo em expansão se tornou transparente para a radiação.[139]
Aproximadamente um milhão de anos após o big bang, a primeira geração de estrelas começou a se formar.[139] No interior da estrela, a nucleossíntese estelar resultou na produção de pósitrons da fusão do núcleo atômico. Estas partículas de antimatéria imediatamente aniquilaram os elétrons, liberando raios gama. O resultado foi uma redução estável no número de elétrons, e um aumento compatível no número de nêutrons. Todavia, o processo de evolução estelar pode resultar na síntese de isótopos radioativos. Alguns isótopos podem subsequentemente passar por um decaimento beta negativo, emitindo um elétron e um antineutrino do núcleo.[140] Um exemplo é o isótopo Cobalto-60(60Co) que decai para formar o Níquel-60.[141]
Uma ramificação de árvore representando a produção de partículas
Processo de produção de partículas geradas por um raio cósmico energético que atinge a atmosfera terrestre
No final de sua vida, uma estrela com mais de 20 massas solares pode passar por um colapso gravitacional para formar um buraco negro.[142] De acordo com a física clássica, estes objetos estelares massivos exercem uma atração gravitacional tão forte que previnem qualquer coisa, até mesmo a radiação eletromagnética, de escapar do raio de Schwarzschild. Porém, acredita-se que os efeitos da mecânica quântica potencialmente permitem a emissão da radiação de Hawking a esta distância. Presume-se que elétrons e pósitrons são criados no horizonte de eventos destas estrelas restantes.
Quando pares de partículas virtuais (tal como um elétron e um pósitron) são criados nas proximidades do horizonte de eventos, a distribuição especial aleatória destas partículas pode permitir a um deles aparecer no exterior; este processo é denominado tunelamento quântico. O potencial gravitacional do buraco negro pode fornecer a energia necessária para transformar esta partícula virtual em uma real, permitindo ser irradiada para o espaço.[143] Em compensação, o outro membro do par é dado uma energia negativa, que resulta em uma perda líquida de energia-massa pelo buraco negro. A taxa de aumento da radiação de Hawking aumenta com o decréscimo da massa, eventualmente causando a evaporação do buraco negro até, finalmente, explodir.[144]
Raios cósmicos são partículas viajando através do espaço com energias elevadas, com registros de valor tão altos quanto 3.0×1020 eV.[145] Quando estas partículas colidem com núcleos atômicos na atmosfera terrestre, uma chuva de partículas é gerada, incluindo píons[146] Mais da metade da radiação cósmica observada na superfície da terra consiste de múons. Esta partícula é um lépton produzido na atomosfera superior pelo decaimento de um píon.
π → μ + ν
μ
Um múon, por sua vez, pode decair para formar um elétron ou um pósitron.[147]
μ → e + ν
e
 + ν
μ
x



TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Observação[editar | editar código-fonte]

Um turbilhão verde no céu noturno sobre o solo coberto de neve
Aurora polar são causadas principalmente por elétrons energizados precipitando na atmosfera.[148]
A observação remota de elétrons requer a detecção das suas energias radiadas. Por exemplo, em ambientes altamente energizados como a coroa solar, elétrons livres formam o plasma que irradia energia devido a radiação Bremsstrahlung. O gás de elétron pode ser submetido a oscilação plasmática, que são ondas provocadas por variações sincronizadas na densidade do elétron, e estes produzem emissões energéticas que podem ser detectadas por radiotelescópios.[149]
frequência de um fóton é proporcional a sua energia. Conforme um elétron transita entre diferentes níveis de energia em um átomo, absorve ou emite um fóton em uma frequência característica. Por exemplo, quando átomos são irradiados por uma fonte de espectro amplo, surgem linhas de absorção distintas no espectro da radiação transmitida. Cada elemento ou molécula demonstra um conjunto característico de linhas espectrais, tal como o espectro do átomo de hidrogênio. Medições espectroscópicas da intensidade e tamanho destas linhas permitem determinar a composição e propriedades físicas da substância.[150][151]
Em condições de laboratório, a interação de elétrons individuais pode ser observada por meio de um detector de partícula, que permite a medição de propriedades específicas tais como energia, spin e carga.[109] O desenvolvimento da armadilha de íons quadrupolo e a armadilha de Penning permitiu que partículas carregadas fossem contidas em regiões pequenas por períodos longos. Isto permitiu a medição precisa das propriedades das partículas. Por exemplo, em uma ocasião a armadilha de Penning foi utilizada para conter um único elétron por um período de dez meses. [152] O momento magnético do elétron foi medido com uma precisão de onze dígitos, que, em 1980, era superior a qualquer outra constante física.[153]
O primeiro vídeo com imagens da distribuição energética de um elétron foi gravado por uma equipe da Universidade de Lund, Suécia, em fevereiro de 2008. Os cientistas utilizaram flashes luminosos extremamente curtos, chamados pulsos de attosegundos, que permitiram a observação do elétron pela primeira vez. [154] [155]
A distribuição de elétrons em materiais sólidos pode ser visualizada pela espectroscopia de fotoemissão angular (ARPES). Esta técnica emprega o efeito fotoelétrico para medir o espaço recíproco- uma representação matemática de estruturas periódicas que é utilizada para inferir a estrutura original. A ARPES pode ser usada para determinar a direção, velocidade e dispersão do elétron dentro do material.[156]

Aplicações em plasma[editar | editar código-fonte]

Feixes de partículas[editar | editar código-fonte]

Um raio violeta vindo de cima produz um brilho azul sobre um modelo do ônibus especial
Durante um teste no túnel de ventoda NASA, um modelo do ônibus espacial é bombardeado com um feixe de elétrons, simulando o efeito dos gases ionizantes durante a reentrada.[157]
Feixes de elétrons são utilizados na soldagem[158] Eles permitem densidades energéticas de até 107 W·cm−2 ao longo de um diâmetro focal de 0.1–1.3 mm e normalmente não requerem material de preenchimento. Esta técnica de soldagem precisa ser executada no vácuo para prevenir que os elétrons interajam com os gases antes de atingir seu alvo, e pode ser usada para unir materiais condutivos que seriam incompatíveis para soldagem por outros métodos.[159][160]
litografia por feixe de elétrons é um método de gravação de semicondutores com resoluções menores que um micrômetro.[161] Esta técnica é limitada pelo alto custo e baixa performance, a necessidade de operar o feixe no vácuo e a tendência dos elétrons se dissiparem no sólido. O último problema limita a uma resolução de 10 nm. Por esta razão, só é utilizada para a produção de um pequeno número de circuitos integrados especializados.[162]
irradiação por elétrons é utilizada em materiais para mudar suas propriedades físicas ou esterilizar produtos alimentícios e médicos.[163]O feixe de elétrons torna-se fluido ou quase derrete o vidro sem incremento significativo da temperatura ou intensidade da radiação: e.g. a radiação intensiva de elétrons causa a diminuição de em muitas ordens de magnitude da viscosidade e diminuição gradual de sua energia de ativação.[164]
Os aceleradores de partículas lineares geram feixes de elétrons para o tratamento de tumores superficiais na radioterapia. Esta técnica pode ser usada para tratamento de lesões de pele como o carcinoma basocelular porque o feixe de elétron tem uma baia penetração antes de ser absorvido, normalmente até 5 cm para elétrons energizados na faixa de 5–20 MeV. Um feixe de elétrons pode ser usado para suplementar o tratamento de áreas que têm sido irradiadas por raio-x.[165][166]
Os aceleradores de partículas usam campos elétricos para impulsionar elétrons e suas antipartículas para energias elevadas. Estas partículas emitem radiação sincrotrônicas conforme passam pelo campo magnético. A dependência da intensidade desta radiação sobre o spin polariza o feixe de elétrons- um processo conhecido como efeito Sokolov–Ternov.[notas 9] Feixes de elétrons polarizados podem ser úteis para vários experimentos. A radiação sincrotrônica também pode resfriar o feixe de elétrons para reduzir a difusão do momento das partículas. Feixes de elétrons e pósitrons são colididos com as partículas acelerando na energia requerida; detectores de partículas observam a emissão energética resultante, que a física de partículas estuda.[167]

Imagiologia[editar | editar código-fonte]

difração de elétrons de baixa energia é um método de bombardear um material cristalino com um feixe de elétrons alinhado e então observar o padrão de difração resultante para determinar a estrutura do material. É requerida uma energia na faixa de 20–200 eV.[168] A técnica de difração de elétrons de alta energia usa a reflexão de um feixe de elétrons disparado em vários ângulos pequenos para caracterizar a superfície do material cristalino. O feixe de energia normalmente está na faixa de 8–20 keV e o ângulo de incidência é de 1–4°.[169][170]
microscopia eletrônica direciona um feixe de elétrons sobre o espécime. Alguns elétrons mudam suas propriedades, tais como a direção do movimento, ângulo, e energia e fase relativa conforme interagem com o material. Os microscopistas podem registrar estas mudanças no feixe de elétrons e reproduzir imagens de nível atômico do material.[171]Sob luz azul, a microscopia ótica convencional tem uma resolução de difração limitada a aproximadamente 200 nm.[172] Em comparação, a microscopia eletrônica é limitada ao comprimento de onda de Broglie do elétron, que é igual a 0.0037 nm para partículas aceleradas através de um potencial de 100.000-Volts.[173] O Microscópio eletrônico de transmissão de aberração corrigida é capaz de atingir uma resolução inferior a 0.05 nm, que é mais do que suficiente para visualizar átomos individualmente.[174] Esta capacidade torna a microscopia eletrônica útil para a imagiologia de alta resolução. Entretanto, são instrumentos caros com alto custo de manutenção.
Existem dois tipos de microscópios eletrônicos: por transmissão ou por varredura. O microscópio eletrônico de transmissão funcionam como um retroprojetor, com o feixe de elétrons passando através de uma fatia do material e sendo projetadas por lentes em um slide fotográfico ou dispositivo de carga acoplada. O microscópio eletrônico por varredura emitem um feixe de elétrons fino, assim como em um aparelho de TV, através da amostra analisada para reproduzir a imagem. A faixa de ampliação vai de 100× até 1.000.000× ou superior para ambos os tipos. O microscópio de corrente de tunelamento utiliza tunelamento quântico de elétrons a partir de uma ponta de metal afiada para dentro do material estudado e pode produzir imagens a nível atômico da superfície.[175][176][177]

Outras aplicações[editar | editar código-fonte]

No laser de elétrons livres, um feixe de elétrons relativísticos passa através de um par de onduladores que contém uma matriz de imãs dipolares cujos campos apontam em direções alternadas. Os elétrons emitem radiação sincrotrônica que interage de forma coerente com os mesmos elétrons para amplificar o campo de radiação na frequência de ressonância. O laser pode emitir radiação eletromagnética de radiança coerente em uma faixa ampla de frequências, desde o microondas até o raio-X.[178]
Os elétrons são importantes em tubos de raios catódicos, onde têm sido amplamente utilizados em dispositivos de imagem em instrumentos de laboratório, monitores de computador e aparelhos de televisão.[179] Em um tubo fotomultiplicador, cada fóton que atinge o fotocátodo inicia uma avalanche de elétrons que produz um pulso de corrente detectável.[180] Tubos de vácuo utilizam um fluxo de elétrons para manipular sinais elétricos, e possuem um papel crítico no desenvolvimento da tecnologia eletrônica. Porém, eles têm sido substituídos por dispositivos de estado sólido tais como transistores.[181]

Ver também[editar | editar código-fonte]

Notas

  1.  A versão fracional do denominador é o inverso do valor decimal (junto com sua incerteza padrão relativa de 4.2×10−13 u).
  2.  A carga do elétron é o valor negativo da carga elementar.
  3.  Tradução livre de ...an estimate was made of the actual amount of this most remarkable fundamental unit of electricity, for which I have since ventured to suggest the name electron"
  4.  Esta magnitude é obtida a partir do número quântico do spin conforme
    x



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    para o número quântico s = 12. Ver: Gupta, M.C. (2001). Atomic and Molecular Spectroscopy. [S.l.]: New Age Publishers. p. 81. ISBN 81-224-1300-5
  5.  Magnetão de Bohr:
    x



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
  6.  O raio clássico do elétron é derivado conforme segue. Assume que a carga do elétron está espalhada uniformemente pelo volume esférico. Uma vez que uma parte da esfera iria repelir outras partes, a esfera contém energia potencial eletrostática. Esta energia é assumida como igual ao resto de energia, definido pela relatividade especial (E = mc2). Da teoria eletrostática, a energia potencial da esfera com raio rr e carga e é dada por :
    x



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde ε0 é a constante de permissividade do vácuo. Para um elétron com resto de massa m0, o resto de energia é igual a:
    x



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde c é a velocidade da luz no vácuo. Fazendo os iguais e resolvendo para r chegamos ao valor do raio clássico do elétron. Ver: Haken, H.; Wolf, H.C.; Brewer, W.D. (2005). The Physics of Atoms and Quanta: Introduction to Experiments and Theory. [S.l.]: Springer. p. 70. ISBN 3-540-67274-5
  7.  Radiação de elétrons não-relativísticos é às vezes denominada radiação ciclotrônica.
  8.  A mudança no comprimento de onda, Δλ, depende do ângulo do recuo, θ, conforme segue,
    x



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde c é a velocidade da luz no vácuo e me é a massa do elétron. Ver Zombeck (2007: 393, 396).
  9.  A polarização de um feixe de elétrons significa que todos os spins dos elétrons apontam em uma direção. Em outras palavras, a projeção dos spins de todos os elétrons em seus vetores de momento tem o mesmo sinal.

















TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D